$$
s(t)=\int v(t) d t
$$

$s^{\prime}(t)=v(t)=\int a(t) d t$

velocity function

$s^{\prime \prime}(t)=v^{\prime}(t)=a(t)$ acceleration function

$$
\left|s\left(t_{1}\right)-s\left(t_{c}\right)\right|+\left|s\left(t_{c}\right)-s\left(t_{2}\right)\right|
$$

total distance $\mathbf{t}_{\mathbf{1}}$ to $\mathbf{t}_{\mathbf{2}}$ where $t_{c}=$ time particle

definition of definite integral

$\lim _{x \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}$
$\left.\begin{array}{|c|c|}\hline f(x) \text { increasing } & f^{\prime}(x)>0 \\ \hline f(x) \text { decreasing } & f^{\prime}(x)<0 \\ \hline f(x) \text { concave up } & \begin{array}{c}f^{\prime \prime}(x)>0 \\ \text { or } \\ f^{\prime}(x) \text { increasing }\end{array} \\ \hline f(x) \text { concave down } & f^{\prime \prime}(x)<0 \\ \text { or } \\ f^{\prime}(x) \text { decreasing }\end{array}\right]$

Point of Inflection

Change in concavity; tangent line exists

Acceleration function

$$
s^{\prime \prime}(t)=v^{\prime}(t)=a(t)
$$

$$
v(t)=0
$$

Particle moving right
$v(t)>0$

Particle moving left

$$
v(t)<0
$$

Particle changes direction

Derivative fails to exist

Intermediate Value Theorem for Continuous Functions $v(t)$ changes sign

1. Corners
 2. Cusps
 3. Vertical Tangents
 4. Discontinuities

A function $f(x)$ that is continuous on a closed interval (a, b) takes on every value between $f(a)$ and $f(b)$

Chain Rule

$$
\frac{d}{d x}(f(g(x))
$$

$f^{\prime}\left(g(x) \cdot g^{\prime}(x)\right.$

Inflection point

$$
f^{\prime}(x)=0
$$

$f(x)$ increasing

$$
f^{\prime}(x)>0
$$

Derivative of

$$
y=f(x)
$$

$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Interpretations of $f^{\prime}(x):$

1. Slope of tangent line.
2. Instantaneous velocity
3. Instantaneous rate of change
$\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$

Derivative of
$y=(x)$ at $(c, f(c))$

Rolle's Theorem	1. $f(x)$ is continuous on $[a, b]$ 2. $f(x)$ is differentiable on (a, b) 3. $f(a)=f(b)$ Then there exists c in (a, b) so $f^{\prime}(c)=0$
Mean Value Theorem	1. $f(x)$ is continuous on $[a, b]$ 2. $f(x)$ is differentiable on (a, b) Then there exists c in (a, b) so $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Extreme Value Theorem	If a function is continuous on a closed interval, then the function is guaranteed to have an absolute maximum and an absolute minmum.
Even function	Symmetrical with respect to the y-axis or $f(-x)=f(x)$
Odd Function	Symmetrical with respect to the origin or $f(-x)=-f(x)$

$\frac{d}{d x}(c)$	$\mathbf{0}$
$\frac{d}{d x}\left(x^{n}\right)$	$n x^{n-1}$
$\frac{d}{d x}(c u)$	$c \frac{d u}{d x}$
$\frac{d}{d x}(u \pm v)$	$\frac{d u}{d x} \pm \frac{d v}{d x}$
$\frac{d}{d x}(u v)$	$u \frac{d v}{d x}+v \frac{d u}{d x}$

$$
\frac{d}{d x}\left(\frac{u}{v}\right)
$$

$$
\frac{d}{d x}(\sin x)
$$

$\cos x$

$$
d x
$$

$$
\frac{d}{d x}(\cos x)
$$

$$
\frac{d}{d x}(\tan x)
$$

$\sec ^{2} x$

$\frac{d}{d x}(\sec x)$	$\sec x \tan x$
$\frac{d}{d x}(\cot x)$	$-\csc ^{2} x$
$\frac{d}{d x}\left(e^{u}\right)$	$e^{u} \frac{d u}{d x}$
$\frac{d}{d x}\left(a^{u}\right)$	$a^{u} \ln a \frac{d u}{d x}$
$\frac{d}{d x}(\ln u)$	$\frac{1}{u} \frac{d u}{d x}$

$\frac{d}{d x}\left(\tan ^{-1} u\right)$	$\frac{1}{1+u^{2}} \frac{d u}{d x}$
$\frac{d}{d x}\left(\cos ^{-1} u\right)$	$-\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
$\frac{d}{d x}\left(\sin ^{-1} u\right)$	$\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
$\frac{d}{d x}\left(\log _{a} u\right)$	$\frac{1}{u \ln a} \frac{d u}{d x}$
$\lim _{h \rightarrow 0} \frac{\sin h}{h}$	1

$\lim _{h \rightarrow 0} \frac{\cos h-1}{h}$	0
$f(x)$ is continuous if:	1. $f(a)$ exists 2. $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$ 3. $\lim _{x \rightarrow a} f(x)=f(a)$
Critical Point	A point on the interior of the domain of a function f at which $\boldsymbol{f}^{\prime}=0$ or \boldsymbol{f} ' does not exist
First Derivative Test	1. At a critical point, if f ' changes from positive to negative, then f has a local maximum at c. 2. At a critical point, if f ' changes from negative, to positive then f has a local minimum at c.
Second Derivative Test	1. If $f^{\prime}(c)=0$ and $f^{\prime}(c)<0$, then f has a local maximum at $\boldsymbol{x}=\boldsymbol{c}$. 2. If $f^{\prime}(c)=0$ and $f^{\prime}(c)>0$, then f has a local minimum at $x=c$.

Newton's Method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Euler's Method

$$
y_{n}=y_{n-1}+f\left(x_{n-1}, y_{n-1}\right) d x
$$

Law of Exponential Change

$y=y_{o} e^{k t}$
$k>0$ growth
$k<0$ decay

Local Linearization

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Logistical Differential Equation

$$
\begin{aligned}
& \frac{d p}{d t}=\frac{k}{m} P(M-P) \\
& P=\frac{M}{1+A e^{-k t}}
\end{aligned}
$$

Newton's Law of Cooling

$$
\frac{d T}{d t}=-k\left(T-T_{S}\right)
$$

$$
T-T_{S}=\left(T_{O}-T_{S}\right) e^{-k t}
$$

Half-life
$\frac{\ln 2}{k}$
$\lim _{h \rightarrow 0} \frac{\tan h}{h}$

