$$s(t) = \int v(t) dt$$
position function $s'(t) = v(t) = \int a(t) dt$ velocity function $s''(t) = v'(t) = a(t)$ acceleration function $|s(t_1) - s(t_c)| + |s(t_c) - s(t_2)|$ total distance t_1 to t_2
where $t_c = time particle$ definition of
definite integral $\lim_{x \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i$

<i>f</i> (<i>x</i>) increasing	f'(x) > 0
<i>f</i> (<i>x</i>) decreasing	f'(x) < 0
f(x) concave up	f'' (x) > 0 or f' (x) increasing
<i>f</i> (<i>x</i>) concave down	f'' (x) < 0 or f' (x) decreasing

Point of Inflection	Change in concavity; tangent line exists
Acceleration function	s''(t) = v'(t) = a(t)
Particle at rest	v(t) = 0
Particle moving right	v(t) > 0
Particle moving left	v(t) < 0

Particle changes direction	v(t) changes sign
Derivative fails to exist	1. Corners 2. Cusps 3. Vertical Tangents 4. Discontinuities
Intermediate Value Theorem for Continuous Functions	A function $f(x)$ that is continuous on a closed interval (a,b) takes on every value between $f(a)$ and $f(b)$
Chain Rule $\frac{d}{dx}(f(g(x)))$	$f'(g(x) \cdot g'(x)$
e	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} \text{ or } \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$

Inflection point	$f^{\prime\prime}(x)=0$
<i>f</i> (<i>x</i>) increasing	f'(x) > 0
Derivative of $y = f(x)$	$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
Interpretations of <i>f</i> '(<i>x</i>):	 Slope of tangent line. Instantaneous velocity Instantaneous rate of change
$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$	Derivative of y=(x) at (c, f(c))

Rolle's Theorem	1. $f(x)$ is continuous on $[a,b]$ 2. $f(x)$ is differentiable on (a,b) 3. $f(a)=f(b)$ Then there exists c in (a,b) so $f'(c) = 0$
Mean Value Theorem	1. $f(x)$ is continuous on $[a,b]$ 2. $f(x)$ is differentiable on (a,b) Then there exists c in (a,b) so $f'(c) = \frac{f(b) - f(a)}{b - a}$
Extreme Value Theorem	If a function is continuous on a closed interval, then the function is guaranteed to have an absolute maximum and an absolute minmum.
Even function	Symmetrical with respect to the y-axis or f(-x) = f(x)
Odd Function	Symmetrical with respect to the origin or f(-x) = -f(x)

$$\frac{\frac{d}{dx}(c)}{\frac{d}{dx}(x^{n})} \qquad \mathbf{0}$$

$$\frac{\frac{d}{dx}(x^{n})}{\frac{d}{dx}(cu)} \qquad \mathbf{nx}^{n-1}$$

$$\frac{\frac{d}{dx}(cu)}{\frac{d}{dx}(u+v)} \qquad \frac{c\frac{du}{dx}}{\frac{du}{dx}}$$

$$\frac{\frac{d}{dx}(u+v)}{\frac{du}{dx}(u+v)} \qquad \frac{\frac{du}{dx}}{\frac{dv}{dx}(u+v)}$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) \qquad \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
$$\frac{d}{dx}(\sin x) \qquad \cos x$$
$$\frac{d}{dx}(\cos x) \qquad -\sin x$$
$$\frac{d}{dx}(\cos x) \qquad \sec^2 x$$
$$\frac{d}{dx}(\tan x) \qquad \sec^2 x$$
$$\frac{d}{dx}(\csc x) \qquad -\csc x \cot x$$

$$\frac{d}{dx}(\sec x)$$
 $\sec x \tan x$ $\frac{d}{dx}(\cot x)$ $-\csc^2 x$ $\frac{d}{dx}(e^u)$ $e^u \frac{du}{dx}$ $\frac{d}{dx}(a^u)$ $a^u \ln a \frac{du}{dx}$ $\frac{d}{dx}(\ln u)$ $\frac{1}{u} \frac{du}{dx}$

$$\frac{d}{dx}(\tan^{-1}u) \qquad \frac{1}{1+u^2}\frac{du}{dx}$$
$$\frac{d}{dx}(\cos^{-1}u) \qquad -\frac{1}{\sqrt{1-u^2}}\frac{du}{dx}$$
$$\frac{d}{dx}(\sin^{-1}u) \qquad \frac{1}{\sqrt{1-u^2}}\frac{du}{dx}$$
$$\frac{d}{dx}(\log_a u) \qquad \frac{1}{u\ln a}\frac{du}{dx}$$
$$\lim_{h\to 0}\frac{\sin h}{h} \qquad 1$$

$\lim_{h \to 0} \frac{\cos h - 1}{h}$	0
f(x) is continuous if:	1. $f(a)$ exists 2. $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$ 3. $\lim_{x \to a} f(x) = f(a)$
Critical Point	A point on the interior of the domain of a function <i>f</i> at which <i>f</i> '=0 or <i>f</i> ' does not exist
First Derivative Test	 At a critical point, if f' changes from positive to negative, then f has a local maximum at c. At a critical point, if f' changes from negative, to positive then f has a local minimum at c.
Second Derivative Test	 1. If f'(c) = 0 and f'(c) <0, then f has a local maximum at x = c. 2. If f'(c) = 0 and f'(c) >0, then f has a local minimum at x = c.

Newton's Method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
Euler's Method	$y_n = y_{n-1} + f(x_{n-1}, y_{n-1})dx$
Law of Exponential Change	$y = y_0 e^{kt}$ k > 0 growth k < 0 decay
Local Linearization	L(x) = f(a) + f'(a)(x - a)
Logistical Differential Equation	$\frac{dp}{dt} = \frac{k}{m} P(M - P)$ $P = \frac{M}{1 + Ae^{-kt}}$

Newton's Law of Cooling	$\frac{dT}{dt} = -k(T - T_S)$ $T - T_S = (T_O - T_S)e^{-kt}$
Half-life	$\frac{\ln 2}{k}$
$\lim_{h \to 0} \frac{\tan h}{h}$	1