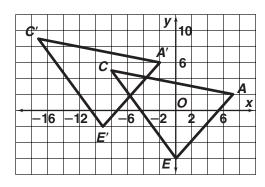
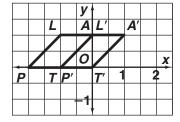

Answers for Lesson 9-1, pp. 473–476 Exercises

- 1. Yes; the trans. is a slide.
- **2.** Yes; the trans. is a flip.
- **3.** No; the figures are not \cong .
- **4. a.** Answers may vary. Sample: $\angle Q \rightarrow \angle Q'$
 - **b.** \overline{QR} and $\overline{Q'R'}$; \overline{RS} and $\overline{R'S'}$; \overline{SP} and $\overline{S'P'}$; \overline{QP} and $\overline{Q'P'}$
- **5.** a. Answers may vary. Sample: $\angle R \rightarrow \angle R'$
 - **b.** \overline{RI} and $\overline{R'I'}$; \overline{IT} and $\overline{I'T'}$; \overline{RT} and $\overline{R'T'}$
- **6.** a. Answers may vary. Sample: $G \rightarrow M$
 - **b.** \overline{GW} and \overline{MR} ; \overline{WP} and \overline{RT} ; \overline{PN} and \overline{TX} ; \overline{NB} and \overline{XS} ; \overline{BG} and \overline{SM}
- 7. (-6,5), (-3,1), (2,4)
- **8.** (1, -2), (4, 1), (10, -2), (7, -5)
- **9**. (-7,5), (-7,8), (-4,8), (-1,2)
- **10.** (-4, -0.5), (-2, -3), (-1, 4), (5, 0)
- **11.** $(x, y) \to (x + 1, y 3)$ **12.** $(x, y) \to (x + 1, y 1)$
- **13.** $(x, y) \rightarrow (x 5, y 2)$ **14.** $(x, y) \rightarrow (x + 4, y 2)$

15. a.


b. about 7.1 km west, 1.9 km north

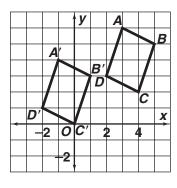

Answers for Lesson 9-1, pp. 473-476 Exercises (cont.)

Norman is 24 mi east and 81 mi south of Enid.

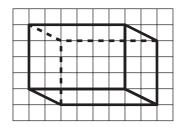
17.
$$(x, y) \to (x + 2, y + 2)$$
 18. $(x, y) \to (x - 3, y + 1)$

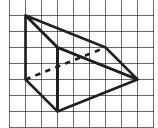
18.
$$(x, y) \rightarrow (x - 3, y + 1)$$

23. a. At least 5 ft east, 10 ft north

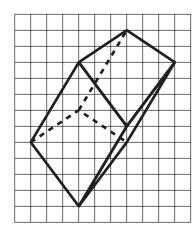

b. Sample:
$$(x, y) \rightarrow (x + 5, y + 10)$$

24. Check students' work. **25.** U'(1, 16), G'(2, 12)


25.
$$U'(1, 16), G'(2, 12)$$


O Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

- **26.** a. $\langle -4, -2 \rangle$
 - b.



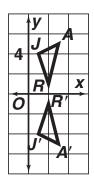
- **27.** No; $\triangle HYP \rightarrow \triangle Y'H'P'$ is the translation
- **28.** $(x, y) \rightarrow (x 2, y + 14)$
- **29.** $(x, y) \rightarrow (x + 13, y 2.5)$
- **30. a.** A slant involves one translation straight downfield and then another diagonally towards the middle of the field; the composition is one translation.
 - **b.** The ball drops straight back with the QB and is then thrown to the receiver downfield; the composition is one translation.
 - **c.** a completion
- 31.

33.

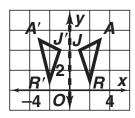
34. Check students' work.

- **35.** a. A'(2,7), B'(0,1), C'(6,-1)
 - **b.** midpoint of $\overline{AB} = (-3, 2)$; midpoint of $\overline{BC} = (-1, -2)$; midpoint of $\overline{AC} = (0, 1)$; midpoint of $\overline{A'B'} = (1, 4)$; midpoint of $\overline{B'C'} = (3, 0)$; midpoint of $\overline{A'C'} = (4, 3)$; image of (-3, 2) = (1, 4) = midpoint of $\overline{A'B'}$; image of (-1, -2) = (3, 0) = midpoint $\overline{B'C'}$; image of (0, 1) = (4, 3) = midpoint of $\overline{A'C'}$
- **36**. Translate a line segment in a direction different than along the segment. Then connect the endpoints of the line segment and its image to form a \square .

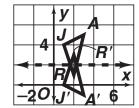
1. (-1,2)

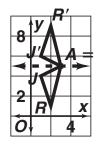

2. (-1, -4)

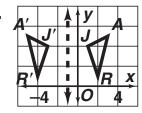
3. (-3,2)

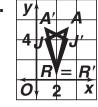

4. (-3,2)

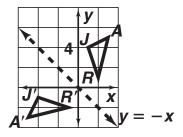
5. (-5, -3)

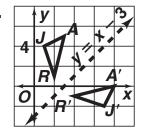



7.

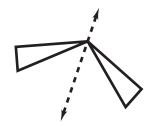

8.


9.

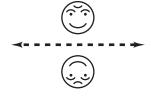

10.

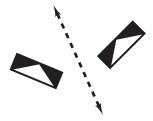


11.



12.




- **14.** Reflect the point for Balance Rock over the line for Summit Trail. Connect this point and Overlook. The trails will connect at the intersection of the segment and Summit Trail.
- **15.** Reflect point *D* over the mirrored wall. Connect this point and *C*. The intersection of the segment and the wall is the point to focus the camera.

17.

18.

19. A

20.

21.

22. S-Isomer

- 23. Answers may vary. Sample: scissors, a baseball glove, a guitar
- **24.** (x, y) has image (x, -y). **25.** (x, y) has image (-x, y).
- **26.** (x, y) has image (y, x).
- Leonardo da Vinci was left-handed. .s .72
 - **b.** Answers may vary. Sample: His writing hand would not cover what was written so far.
- **28.** (0, -6)

29. (4, 0)

30. (0, 0)

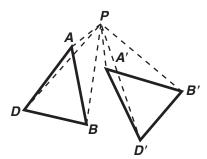
31. (-4,6)

32. (-4,6)

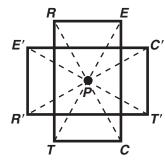
33. (0, -4)

34. (2*a*, 2*b*)

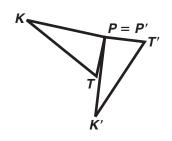
35. (0, 2*a*)

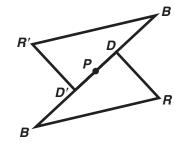

- **36.** (2*b*, 0)
- **37.** $\overline{AB} \cong \overline{A'B'}; \overline{BC} \cong \overline{B'C'}; \overline{AC} \cong \overline{A'C'}; A \to A'; B \to B';$ $C \rightarrow C'$; $\angle A \cong \angle A'$; $\angle B \cong \angle B'$; $\angle C \cong \angle C'$

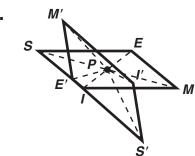
Answers for Lesson 9-2, pp. 480–482 Exercises (cont.)


- 38-45. Answers may vary. Samples are given.
- **38.** yes; reflect a \triangle across any side and then reflect the image across the \perp bisector of that side.
- **39.** yes; follow Exercise 38 steps, first using one side of the triangle and again using a second side.
- **40.** yes; reflect a scalene \triangle across any side, a non-rt. isosc. \triangle across either leg, or a non-isosc. rt. \triangle across its hyp.
- **41.** ves; reflect an isosc. \triangle across its base.
- **42.** yes; follow Exercise 38 using a rt. \triangle and the hyp. as the first reflection line.
- **43.** yes; reflect an isosc. rt. \triangle across its hyp.
- **44.** The slope of \overrightarrow{AB} is $\frac{a-b}{b-a} = \frac{a-b}{-1(a-b)} = -1$. The slope of y = x is 1. Since (1)(-1) = -1, the lines are \bot . The midpoint of $\overline{AB} = \left(\frac{b+a}{2}, \frac{a+b}{2}\right)$, which is a pt. on y = x.
- **45.** for $b \neq d$, $y = \left(\frac{a-c}{d-b}\right)x \frac{a^2+b^2-c^2-d^2}{2(d-b)}$; for b = d, $\chi = \frac{a+c}{2}$
- **46.** a. (4, 2)
 - **b.** (-2, -4)
 - c. (-4, -2)
 - d. (2,4)
 - **e.** They are the same point.

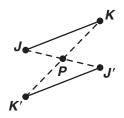
Answers for Lesson 9-3, pp. 485–487 Exercises

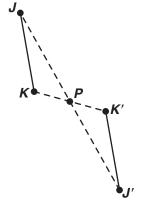

1.


2.


3.

4.


5.

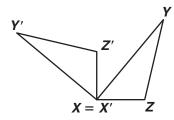


6.

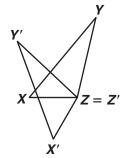
6.
$$K'$$
 J P K

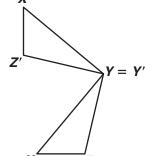
7.

Answers for Lesson 9-3, pp. 485-487 Exercises (cont.)

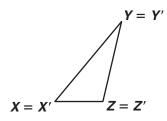

9.
$$\phi K$$

$$J' \phi J = F$$

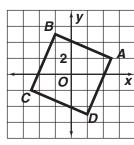

- 15. \overline{LM}
- **17.** *K*
- **19.** 108°; 252


- 23. x = z' x'

- **10.** *H*
- **11.** *M*
- **12.** *C*
- **13.** \overline{BC}
- **14.** *A*
- **16.** *I*
- **18.** 90°; 270
- 20.



22.


Answers for Lesson 9-3, pp. 485–487 Exercises (cont.)

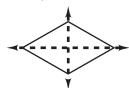
- **26.** $\overline{MN} \cong \overline{M'N'}; \overline{EN} \cong \overline{EN'};$ $\overline{ME} \cong \overline{M'E}; \angle M \cong \angle M';$ $\angle N \cong \angle N'; \angle MEN \cong$ $\angle M'EN'; \angle MEM' \cong$ $\angle NEN'$
- **27.** 180° rotation about its center
- **28.** 180
- **29.** 110

30. 290

31. a-c.

- **d.** Square; all sides are \cong and all \angle s are 90°.
- **32.** Draw two segments connecting preimage pts. \underline{A} and \underline{B} to image pts. \underline{A}' and \underline{B}' . Construct the \bot bis. of $\overline{AA'}$ and $\overline{BB'}$ to find \underline{C} , the center of rotation. $\underline{m} \angle ACA'$ is the \angle of rotation.
- **33.** Answers may vary. Sample: a 90° and a 270° rotation
- **34.** Check students' graphs.

Rotation about origin: L'(1, 2), M'(2, 6), N'(-2, 4)

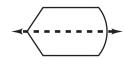

Rotation about L: L'(2, -1), M'(3, 3), N'(-1, 1)

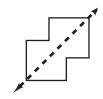
Rotation about M: L'(5, -6), M'(6, -2), N'(2, -4)

Rotation about N: L'(7,0), M'(8,4), N'(4,2)

Answers for Lesson 9-4, pp. 494–496 Exercises

1. line; rotational: 180°

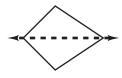

2. line


- 3. rotational: 90°
- **4.** line, rotational: 60°

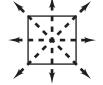
- **5.** rotational: 180°
- **6.** no symmetry
- **7.** no symmetry
- **8.** rotational: any angle; line: any line passing through the center
- **9.** rotational: 60°
- **10.** line

11. line, rotational: 180°

12. line, rotational: 90°



13.



14.

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

15.

- **17.** rotational and reflectional **18.** reflectional
- 19-20. Answers may vary. Samples are given.
- 19. CODE, HOOD, DOCK
- 20. TOMATO, HOAX, WAXY
- 21. a. Language Horz. Vert. **Point** line line **English** B, C, D, E, A, H, I, M, H, I, N, O H, I, K, O, X S, X, Z O, T, U, V, **W**, **X**, **Y** Greek $A, \Delta, H,$ B, E, H, Θ **Ζ**, **H**, **Θ**, **I**, I, K, Ξ, O, Θ , I, Λ , N, Ξ, Ο, Ф, Х Σ, Φ, Χ M, Ξ, O, П, Т, Ү,
 - **b.** Answers may vary. Sample: Greek; Greek alphabet has more letters with at least one kind of symmetry and more letters with multiple symmetries.

 Φ, X, Ψ, Ω

22–23. Sketches may vary.

- **22.** reflectional
- 23. rotational: 90°; reflectional
- **24.** Answers may vary. Sample: $30 \div 10 = 3$; |8 1| = |1 8|, 80 + 3 < 88; $\frac{80}{80} = \frac{33}{33}$
- **25.** reflectional; rotational **26.** reflectional
- **27.** point **28.** none
- **29.** reflectional; rotational **30.** reflectional
- **31.** reflectional, rotational **32.** reflectional
- **33.** Yes; the bisector divides the \angle into $2 \cong \triangle$ with one side of the \angle being the reflection of the other.
- **34.** Not necessarily; the \triangle would need the two other \triangle to be \cong .

- **35.** Not necessarily; the bisector divides the segment into $2 \cong$ parts but one part cannot be the reflection of the other unless the bisector is the \perp bisector.
- **36.** D
- **37.** (-3,4)

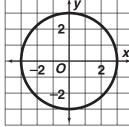
38. (3, -4)

39. (-3, -4)

40. (4, 3)

41.

point symmetry about any pt. on the line; reflectional in any member of the family of lines y = -x + b

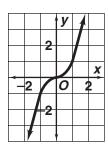

42.

reflectional in y-axis

reflectional in *x*-axis

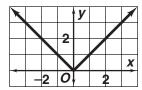
43. ō

44.

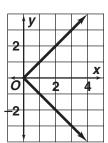


rotational symmetry of any ∠ about the origin; reflectional in any line through the origin

45.


reflectional in x = -2

46.


point symmetry about origin

47.

reflectional in y-axis

48.

reflectional in *x*-axis

49-50. Answers may vary. Samples are given.

49.

50

Answers for Lesson 9-5, pp. 500-503 Exercises

1. enlargement; center A, scale factor $\frac{3}{2}$

2. enlargement; center *C*, scale factor 3

3. enlargement; center R, scale factor $\frac{3}{2}$

4. reduction; center K, scale factor $\frac{1}{3}$

5. reduction; center L, scale factor $\frac{1}{3}$

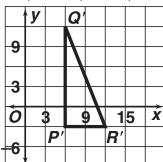
6. enlargement; center M, scale factor 2

7. reduction; center (0, 0), scale factor $\frac{1}{2}$

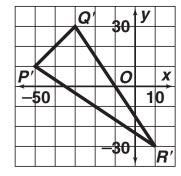
8. enlargement; center (0,0), scale factor 2

9. enlargement; center (0,0), scale factor $\frac{3}{2}$

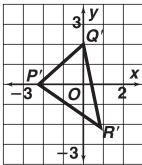
10. 121.94 in.


11. 512 in.

12. 67.5 in.


13. 1.25 ft

14. about 0.35 in.


15. P'(6, -3), Q'(6, 12), R'(12, -3)

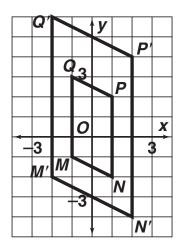
16. P'(-50, 10), Q'(-30, 30), R'(10, -30)

17. $P'\left(-\frac{9}{4},0\right), Q'\left(0,\frac{9}{4}\right), R'\left(\frac{3}{4},-\frac{9}{4}\right)$

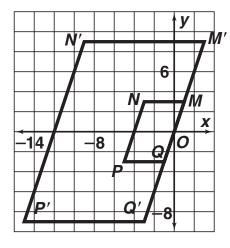
- **18.** D'(2, -10)
- **20.** A'(-9,3)
- **22.** M'(0,0)
- **24.** $F'(-1, -\frac{2}{3})$
- **26.** $Q'(6\sqrt{6}, \frac{3\sqrt{2}}{2})$
- **27.** Q'(-9, 12), W'(9, 15), T'(9, 3), R'(-6, -3)
- **28.** Q'(-6,8), W'(6,10), T'(6,2), R'(-4,-2)
- **29.** $Q'(-\frac{3}{2},2), W'(\frac{3}{2},\frac{5}{2}), T'(\frac{3}{2},\frac{1}{2}), R'(-1,-\frac{1}{2})$
- **30.** $Q'\left(-\frac{3}{4},1\right), W'\left(\frac{3}{4},\frac{5}{4}\right), T'\left(\frac{3}{4},\frac{1}{4}\right), R'\left(-\frac{1}{2},-\frac{1}{4}\right)$
- **31.** Q'(-1.8, 2.4), W'(1.8, 3), T'(1.8, 0.6), R'(-1.2, -0.6)
- **32.** Q'(-2.7, 3.6), W'(2.7, 4.5), T'(2.7, 0.9), R'(-1.8, -0.9)
- **33.** Q'(-30, 40), W'(30, 50), T'(30, 10), R'(-20, -10)
- **34.** Q'(-300, 400), W'(300, 500), T'(300, 100), R'(-200, -100)

19. L'(-15,0)

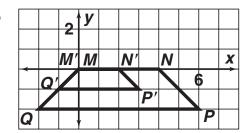
23. N'(-0.4, -0.7)

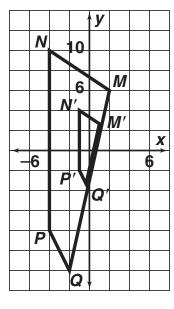

21. T'(0, 18)

25. $B'(\frac{1}{8}, -\frac{1}{15})$


- The image has side lengths 10 in. and \angle measures 60.
- **36.** B

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.


37.

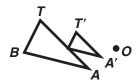

38.

39.

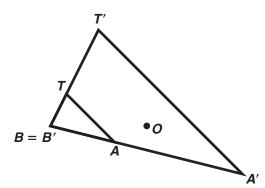
40.

- **41.** Check students' work.
- **42.** Use a scale factor of $\frac{2}{5}$.

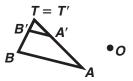
43.
$$I'J' = 10; H'J' = 12$$

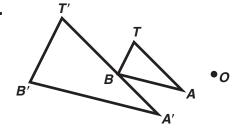

44.
$$HJ = 12$$
; $I'J' = 5.25$

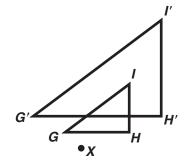
45.
$$HI = 32$$
; $I'J' = 7.5$


46. The perimeter is doubled but the area is multiplied by 4.

47.
$$x = 3$$
; $y = 60$

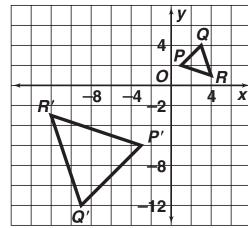

48. 60, 60; the two triangles are similar, so corresponding angles are congruent.


50.



51.

52.



- **54.** 12
- **55.** 60 cm
- **56.** $\frac{9}{256}$ ft²
- **57.** False; a dilation doesn't map a segment to $a \cong$ segment unless the scale factor is 1.
- **58.** False; a dilation does not change orientation.
- **59.** False; a dilation with a scale factor greater than 1 is an enlargement.
- **60.** True; the image and preimage are similar, so the corresponding \triangle are \cong .

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved

- **61.** False; if the center of dilation is on the preimage, it is also on the image.
- **62.** Each vertex is 1 ft from the light.
- **63.** Connect corresponding points A and A' and B and B'. Extend $\overline{AA'}$ and $\overline{BB'}$ until they intersect at the center of dilation. The scale factor is the length of $\overline{A'B'}$ divided by the length of \overline{AB} .
- 64. a., c.

Geometry

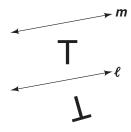
b. P'(-3, -6), Q'(-9, -12),R'(-12, -3)

- **65.** a. P'(-1, -2), Q'(-3, -4), R'(-4, -1)
 - **b.** Each point of the \triangle is reflected in the origin, which is the point of reflection. Two figures are symmetrical with respect to a pt. P if P is the midpoint of each segment that connects two corr. points of the figures.
- 66. Construct small square D'E'F'G' so that $\overline{D'G'}$ is on \overline{AC} (with D' between A and G'), E' is on \overline{AB} , and F' is inside $\triangle ABC$. Draw $\overline{AF'}$ to meet \overline{BC} at F. Through F construct the line \parallel to \overline{AC} . Label its point of intersection with \overline{AB} as E. Through E and F construct the lines \bot to \overline{AC} . Label their points of intersection with \overline{AC} as D and G respectively. DEFG is the desired square.

Answers for Lesson 9-6, pp. 509-511 Exercises

1. rotation

- **2.** translation
- **3.** Neither; the figures do not have the same orientation.

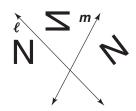

F is translated down twice the distance between ℓ and m.

5. M ***
M

M is translated across line m twice the distance between ℓ and m.

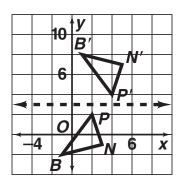
6. T

T is translated across line m twice the distance between ℓ and m.

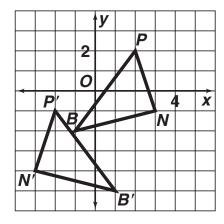


L is rotated clockwise about 180° .

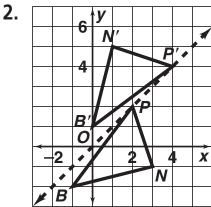
V is rotated clockwise about 145°.

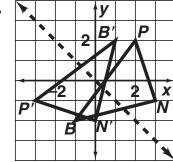

Answers for Lesson 9-6, pp. 509-511 Exercises (cont.)

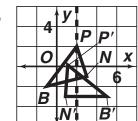
9.

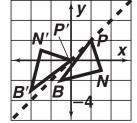


N is rotated clockwise about 160° .


10.


11.


12.



13.

14.

- **16.** opp.; reflection
- **18.** same; translation
- 20. same; rotation
- 22. opp.; reflection

- 17. opp.; glide reflection
- 19. same; rotation
- **21.** same; translation
- 23. opp.; glide reflection

Answers for Lesson 9-6, pp. 509-511 Exercises (cont.)

24. glide reflection; $(x, y) \rightarrow (x - 2, y - 2)$ followed by refl. in y = x - 1

- **25.** rotation; 180° about the pt. $(\frac{1}{2}, 0)$
- **26.** C
- **27.** Odd isometries can be expressed as the composition of an odd number of reflections. Even isometries are the composition of an even number of reflections.
- 28. Check students' work.
- **29.** Yes; a rotation of x° followed by a rotation of y° is equivalent to a rotation of $(x + y)^{\circ}$.
- **30.** No; explanations may vary.
- **31.** 60°
- **32.** 60°
- **33.** $51\frac{3}{7}^{\circ}$
- **34.** 30°
- **35.** rotation; center C, \angle of rotation 180°
- **36.** glide reflection; $(x, y) \rightarrow (x + 11, y), y = 0$
- **37.** translation; $(x, y) \rightarrow (x 9, y)$
- **38.** reflection; y = 0

- **39.** reflection; x = 4
- **40.** reflection; $x = -\frac{1}{2}$
- **41.** rotation; center (3,0), \angle of rotation 180°
- **42.** glide reflection; $(x, y) \rightarrow (x, y + 4), x = 4$
- **43.** translation; $(x, y) \rightarrow (x 11, y 4)$
- **44.** rotation; center $(0, 2), \angle$ of rotation 180°
- **45.** Sample: Translate the red R so that one point moves to its corresponding point on the blue R. Then reflect across a line passing through that point.

Answers for Lesson 9-6, pp. 509-511 Exercises (cont.)

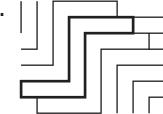
- 46-48. Answers may vary. Samples are given.
- **46.** If \overline{XY} is reflected in line ℓ , then ℓ is the \bot bis. of $\overline{XX'}$ and $\overline{YY'}$, so $\overline{XX'} \parallel \overline{YY'}$ and XX'YY' is an isosc. trap. Therefore $\overline{XY} \cong \overline{X'Y'}$.
- **47.** $\overline{XX'} \parallel \overline{YY'}$ and $\overline{XX'} \cong \overline{YY'}$, so XX'Y'Y is a \square . Therefore, $\overline{XY} \cong \overline{X'Y'}$.
- **48.** If \overline{XY} is rotated x° about pt. R, then $\overline{RX} \cong \overline{RX'}$ and $\overline{RY} \cong \overline{RY'}$. Also, $m \angle XRY + m \angle YRX' = m \angle YRX' + m \angle X'RY' = x$, so $\angle XRY \cong \angle X'RY'$. So $\triangle XRY \cong \triangle X'RY'$ by SAS and $\overline{XY} \cong \overline{X'Y'}$ by CPCTC.
- **49.** Answers may vary. Sample: Since a reflection moves a pt. in the direction \bot to the translation, the order does not matter.
- **50.** No; explanations may vary. Sample: If (1, 1) is reflected over the line y = x and then the x-axis, the image is (1, -1). If the reflections are reversed, the image is (-1, 1).
- **51.** (6, 5)
- **52.** (3, 8)
- **53.** (2, 6)
- **54.** (-3, 1)

Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

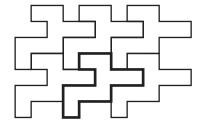
1-4. Answers may vary. Samples are given.

- **1.** yes; translation; two \perp rectangles
- 2. yes; translation; two s and a rhombus with a flower in it
- 3. yes; translation; four rectangles in a square shape
- **4.** yes; translation; from upper left corner, 5 rectangles down and full width
- **5.** yes

6. yes

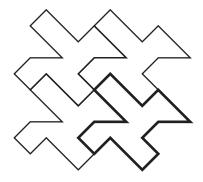

7. no

8. no


9. no

- **10.** no
- 11. rotational, reflectional, glide reflectional, and translational
- **12.** rotational, point, reflectional, glide reflectional, and translational
- 13. rotational, reflectional, glide reflectional, and translational
- 14. rotational and reflectional

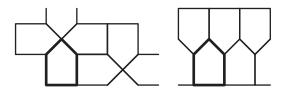
15.



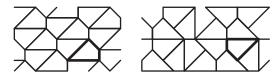
16.

17.

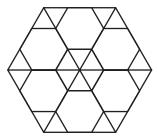
Geometry


Chapter 9

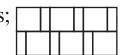
- **18.** C
- 19-21. Answers may vary. Samples are given.


19.

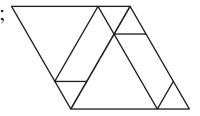
20.



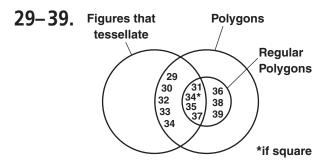
21.



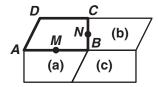
- 22. A regular polygon with more than 6 sides must have ∠ measures greater than 120, and at least 3 polygons must meet at each vertex. The sum of 3 or more ≰ with measures greater than 120 > 360. So the 3 regular polygons are 3-, 4-, and 6-sided, since their int. ∠ measures divide 360.
- **23.** no


24. yes;

25. yes;



26. yes;



- 27. reflectional, glide reflectional, rotational, and translational
- **28.** rotational, point, reflectional, glide reflectional, and translational

Answers for Lesson 9-7, pp. 518-520 Exercises (cont.)

40. a-c. Drawings may vary. Sample:

- **41.** Answers may vary. Sample: Draw $\triangle ABC$. Locate M, the mdpt. of \overline{AB} , and N, the mdpt. of \overline{BC} . Draw the images of $\triangle ABC$ under 180° rotations about M and N. Draw the image of $\triangle ABC$ under the translation that maps A to C. 2^{nd} way: Draw $\triangle ABC$. Draw the reflection image of pt. C over \overline{AB} , C'. Now use the steps from Ex. 38 for quad. ACBC'.

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Geometry Chapter 9

216