Calculus AB

Derivative Formulas

Derivative Notation:

For a function $\mathrm{f}(\mathrm{x})$, the derivative would be $f^{\prime}(x)$

Leibniz's Notation:

For the derivative of y in terms of x , we write $\frac{d y}{d x}$
For the second derivative using Leibniz's Notation: $\frac{d^{2} y}{d x^{2}}$

Product Rule:

$$
\begin{array}{ll}
y=f(x) g(x) & y=x^{2} \sin x \\
\frac{d y}{d x}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x) & \frac{d y}{d x}=2 x \sin x+\cos x\left(x^{2}\right) \\
& \frac{d y}{d x}=2 x \sin x+x^{2} \cos x
\end{array}
$$

Quotient Rule:

$$
\begin{array}{ll}
y=\frac{f(x)}{g(x)} & y=\frac{\sin x}{x^{3}} \\
\frac{d y}{d x}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{(g(x))^{2}} & \frac{d y}{d x}=\frac{\cos x\left(x^{3}\right)-3 x^{2} \sin x}{x^{6}} \\
\frac{d y}{d x}=\frac{x \cos x-3 \sin x}{x^{4}}
\end{array}
$$

Chain Rule:

$$
\begin{aligned}
& y=(f(x))^{n} \\
& \frac{d y}{d x}=n(f(x))^{n-1}\left(f^{\prime}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
& y=\left(x^{2}+1\right)^{3} \\
& \frac{d y}{d x}=3\left(x^{2}+1\right)^{2} \cdot 2 x \\
& \frac{d y}{d x}=6 x\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Natural Log

$$
\begin{aligned}
& y=\ln (f(x)) \\
& \frac{d y}{d x}=\frac{1}{f(x)} \cdot f^{\prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& y=\ln \left(x^{2}+1\right) \\
& \frac{d y}{d x}=\frac{1}{x^{2}+1} \cdot 2 x \\
& \frac{d y}{d x}=\frac{2 x}{x^{2}+1}
\end{aligned}
$$

Power Rule:

$$
\begin{array}{ll}
y=x^{a} & y=2 x^{5} \\
\frac{d y}{d x}=a x^{a-1} & \frac{d y}{d x}=10 x^{4}
\end{array}
$$

Constant with a Variable Power:

$$
\begin{aligned}
& y=a^{f(x)} \\
& \frac{d y}{d x}=a^{f(x)} \cdot \ln a \cdot f^{\prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& y=2^{x} \\
& \frac{d y}{d x}=2^{x} \ln \cdot 1 \\
& y=3^{x^{2}} \\
& \frac{d y}{d x}=3^{x^{2}} \cdot \ln 3 \cdot 2 x
\end{aligned}
$$

Variable with a Variable power

$$
\begin{aligned}
& y=f(x)^{g(x)} \quad \text { Take ln of both sides! } \\
& y=x^{\sin x} \\
& \ln y=\ln x^{\sin x} \\
& \ln y=\sin x \ln x \\
& \frac{1}{y} \frac{d y}{d x}=\cos x \ln x+\frac{1}{x} \sin x \\
& \frac{d y}{d x}=x^{\sin x}\left[\cos x \ln x+\frac{1}{x} \sin x\right]
\end{aligned}
$$

Implicit Differentiation:

Is done when the equation has mixed variables:

$$
\begin{aligned}
& x^{2}+x^{2} y^{3}+y^{4}=5 \\
& \text { derivative } \Rightarrow 2 x+\left[2 x y^{3}+3 y^{2} \frac{d y}{d x} x^{2}\right]+4 y^{3} \frac{d y}{d x}=0 \\
& \Rightarrow 3 y^{2} x^{2} \frac{d y}{d x}+4 y^{3} \frac{d y}{d x}=-2 x-2 x y^{3} \\
& \Rightarrow \frac{d y}{d x}=\frac{-2 x-2 x y^{3}}{3 y^{2} x^{2}+4 y^{3}}
\end{aligned}
$$

Trigonometric Functions:

$$
\begin{aligned}
& \frac{d}{d x} \sin x=\cos x \\
& \frac{d}{d x} \cos x=-\sin x \\
& \frac{d}{d x} \tan x=\sec ^{2} x \\
& \frac{d}{d x} \sec x=\sec x \tan x
\end{aligned}
$$

Inverse Trigonometric Functions:

$$
\begin{array}{ll}
y=\arcsin x & y=\arctan x \\
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}} \cdot 1 & \frac{d y}{d x}=\frac{1}{1+x^{2}} \cdot 1 \\
y=\arcsin x^{4} & y=\arctan x \\
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{8}}} \cdot 4 x^{3} & \frac{d y}{d x}=\frac{1}{1+x^{6}} \cdot 3 x^{2}
\end{array}
$$

Integral Formulas

Basic Integral

$$
\begin{aligned}
& \int 5 d x \\
& =5 x+C \\
& \int \pi \\
& =\pi x+C
\end{aligned} \quad \text {,where C is an arbitrary constant }
$$

Variable with a Constant Power

$$
\begin{array}{ll}
\int x^{a} d x & \int x^{3} d x \\
=\frac{x^{a+1}}{a+1}+C & =\frac{x^{4}}{4}+C
\end{array}
$$

Constant with a Variable Power

$$
\begin{array}{ll}
\int a^{x} d x & \int 5^{x} d x \\
=\frac{a^{x}}{\ln a}+C & =\frac{5^{x}}{\ln 5}+C \\
& \int 3^{2 x} d x \\
& =\frac{3^{2 x}}{2 \ln 3}+C
\end{array}
$$

Fractions

$$
\begin{aligned}
& \int \frac{1}{x^{4}} d x \\
& \int x^{-4} d x \\
& =-\frac{x^{-3}}{3}
\end{aligned}
$$

if the top is the derivative of the bottom

$$
\begin{aligned}
& \int \frac{1}{x} d x \\
& =\ln |x|+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{x^{3}}{x^{4}+1} d x \\
& =\frac{1}{4} \ln \left|x^{4}+1\right|+C
\end{aligned}
$$

Substitution

When integrating a product in which the terms are somehow related, we usually let $\mathrm{u}=$ the part in the parenthesis, the part under the radical, the denominator, the exponent, or the angle of the trigonometric function

$$
\begin{array}{ll}
\int x \sqrt{x^{2}+1} \cdot d x ; \quad u=x^{2}+1 & \int \cos 2 x d x ; u=2 x \\
d u=2 x \cdot d x & \\
=\frac{1}{2} \int 2 x\left(x^{2}+1\right)^{1 / 2} \cdot d x & =\frac{1}{2} \int 2 \cos 2 x \cdot d x \\
=\frac{1}{2} \int u^{1 / 2} d u & =\frac{1}{2} \int \cos u d u \\
=\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}+C & =\frac{1}{2} \sin u+C \\
=\frac{1}{3}\left(x^{2}+1\right)^{3 / 2}+C & =\frac{1}{2} \sin 2 x+C
\end{array}
$$

Integration by Parts

When taking an integral of a product, substitute for u the term whose derivative would eventually reach 0 and the other term for dv .

The general form: $u v-\int v d u$ (pronounced "of dove")
Example:

$$
\begin{aligned}
& \int x \cdot e^{x} d x \\
& u=x \quad d v=e^{x} d x \\
& d u=1 d x \quad v=e^{x} \\
& =x \cdot e^{x}-\int e^{x} d x \\
& =x e^{x}-e^{x}+C
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \int x^{2} \cos x \\
& u=x^{2} \quad d v=\cos x d x \\
& d u=2 x d x \quad v=\sin x \\
& x^{2} \sin x-\int 2 x \sin x \\
& u=2 x \quad d v=\sin x d x \\
& d u=2 d x \quad v=-\cos x \\
& x^{2} \sin x-\left[-2 x \cos x-\int-2 \cos x\right. \\
& \Rightarrow x^{2} \sin x+2 x \cos x-2 \sin x+C
\end{aligned}
$$

Inverse Trig Functions

Formulas:

$$
\begin{array}{ll}
\int \frac{1}{\sqrt{a^{2}-x^{2}}} & \int \frac{1}{a^{2}+x^{2}} \\
=\arcsin \frac{x}{a}+C & =\frac{1}{a} \arctan \frac{x}{a}+C
\end{array}
$$

Examples:

$$
\begin{array}{ll}
\int \frac{1}{\sqrt{9-x^{2}}} ; a=3 ; v=x & \int \frac{1}{16+x^{2}} ; a=4 ; v=x \\
=\arcsin \frac{x}{3}+C & =\frac{1}{4} \arctan \frac{x}{4}+C
\end{array}
$$

More examples:

$$
\begin{array}{ll}
\int \frac{1}{\sqrt{4-9 x^{2}}} ; a=2 ; v=3 x & \int \frac{1}{9 x^{2}+16} \quad a=4 ; v=3 x \\
\frac{1}{3} \int \frac{3}{\sqrt{4-9 x^{2}}} & \frac{1}{3} \int \frac{3}{9 x^{2}+16} \\
=\frac{1}{3} \arcsin \frac{3 x}{2}+C & =\frac{1}{3} \bullet \frac{1}{4} \arctan \frac{3 x}{4}+C \\
& =\frac{1}{12} \arctan \frac{3 x}{4}+C
\end{array}
$$

Trig Functions

$$
\begin{array}{ll}
\int \sin x d x=-\cos x+C & \int \sec ^{2} x d x=\tan x+C \\
\int \cos 2 x d x=\frac{\sin 2 x}{2}+C & \int \sec x \tan x=\sec x+C \\
\int \tan x d x=-\ln |\cos x|+C & \int \cot x d x=\ln |\sin x|+C
\end{array}
$$

Properties of Logarithms

Form

logarithmic form <=> exponential form

$$
\mathrm{y}=\log _{\mathrm{a}} x \quad<=>\quad \mathrm{a}^{\mathrm{y}}=\mathrm{x}
$$

Log properties

$$
\begin{aligned}
& \mathrm{y}=\log \mathrm{x}^{3} \quad=>\quad \mathrm{y}=3 \log x \\
& \log x+\log y=\log x y \\
& \log x-\log y=\log (x / y)
\end{aligned}
$$

Change of Base Law

This is a useful formula to know.

$$
y=\log _{a} x \Rightarrow \frac{\log x}{\log a}-\text { or }-\frac{\ln x}{\ln a}
$$

Properties of Derivatives

$\mathbf{1}^{\text {st }}$ Derivative shows: maximum and minimum values, increasing and decreasing intervals, slope of the tangent line to the curve, and velocity
$2^{\text {nd }}$ Derivative shows: inflection points, concavity, and acceleration

- Example on the next page -

Example:
$y=2 x^{3}-3 x^{2}-36 x+2 \quad$ Find everything about this function

$$
\begin{aligned}
& \frac{d y}{d x}=6 x^{2}-6 x-36 \\
& 0=6\left(x^{2}-x-6\right) \quad 1^{\text {st }} \text { derivative finds max, min, increasing, } \\
& 0=6(x-3)(x-2) \\
& x=3,-2
\end{aligned}
$$

decreasing
$\underline{\max }$
$(-2,46)$
increasing
$(-\infty,-2][3, \infty)$
$\frac{d^{2} y}{d x^{2}}=12 x-6$
$0=6(2 x-1) \quad 2^{\text {nd }}$ derivative finds concavity and inflection points
$x=\frac{1}{2}$

inflection pt
(1/2, ,-16 $1 / 2$)
concave up concave down
($-\infty, 1 / 2$)
$(1 / 2, \infty)$

Miscellaneous

Newton's Method

Newton's Method is used to approximate a zero of a function
$c-\frac{f(c)}{f^{\prime}(c)} \quad$ where c is the $1^{\text {st }}$ approximation

Example:

If Newton's Method is used to approximate the real root of $\mathrm{x}^{3}+\mathrm{x}-1=0$, then a first approximation of $\mathrm{x}_{1}=1$ would lead to a third approximation of x_{3} :

$$
f(x)=x^{3}+x-1
$$

$$
f^{\prime}(x)=3 x^{2}+1
$$

$$
\begin{aligned}
& 1-\frac{f(1)}{f^{\prime}(1)}=\frac{3}{4} \text { or } .750=x_{2} \\
& \frac{3}{4}-\frac{f\left(\frac{3}{4}\right)}{f^{\prime}\left(\frac{3}{4}\right)}=\frac{59}{86} \text { or } .686=x_{3}
\end{aligned}
$$

Separating Variables

Used when you are given the derivative and you need to take the integral. We separate variables when the derivative is a mixture of variables

Example:

If $\frac{d y}{d x}=9 y^{4}$ and if $\mathrm{y}=1$ when $\mathrm{x}=0$, what is the value of y when
$\mathrm{x}=\frac{1}{3}$?
$\frac{d y}{d x}=9 y^{4} \Rightarrow \frac{d y}{y^{4}}=9 d x$
$\int \frac{d y}{y^{4}}=\int 9 d x \Rightarrow \frac{y^{-3}}{-3}=9 x+C$

Continuity/Differentiable Problems

$f(x)$ is continuous if and only if both halves of the function have the same answer at the breaking point.
$f(x)$ is differentiable if and only if the derivative of both halves of the function have the same answer at the breaking point

Example:

$$
\begin{array}{cl}
\Rightarrow x^{2}, x \leq 3 & \Rightarrow 2 x=6(\text { plug in } 3) \\
f(x)= & f^{\prime}(x)= \\
\Rightarrow 6 x-9, x>3 &
\end{array}
$$

- At 3, both halves $=9$, therefore, $f(x)$ is continuous
- At 3, both halves of the derivative $=6$, therefore, $f(x)$ is differentiable

Useful Information

- We designate position as $x(t)$ or $s(t)$
- The derivative of position $x^{\prime}(t)$ is $v(t)$, or velocity
- The derivative of velocity, $v^{\prime}(t)$, equals acceleration, $a(t)$.
- We often talk about position, velocity, and acceleration when we're discussing particles moving along the x -axis.
- A particle is at rest when $v(t)=0$.
- A particle is moving to the right when $v(t)>0$ and to the left when $v(t)<0$
- To find the average velocity of a particle: $\frac{1}{b-a} \int_{a}^{b} v(t) d t$

Average Value

Use this formula when asked to find the average of something

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Mean Value Theorem

NOT the same average value.
According to the Mean value Theorem, there is a number, c, between a and b, such that the slope of the tangent line at c is the same as the slope between the points ($a, f(a)$) and ($b, f(b)$).

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Growth Formulas

Double Life Formula: $\quad y=y_{0}(2)^{t / d}$
Half Life Formula: $y=y_{0}(1 / 2)^{t / h}$
Growth Formula: $y=y_{0} e^{k t}$
$y=$ ending amount $y_{0}=$ initial amount $\mathrm{t}=$ time
$\mathrm{k}=$ growth constant $\mathrm{d}=$ double life time $\mathrm{h}=$ half life time

Useful Trig. Stuff

Double Angle Formulas:

$$
\begin{aligned}
& \sin 2 x=2 \sin x \cos x \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x
\end{aligned}
$$

Identities:

$$
\begin{array}{lll}
\sin ^{2} x+\cos ^{2} x=1 & \frac{1}{\cos \theta}=\sec \theta & \frac{1}{\sin \theta}=\csc \theta \\
1+\tan ^{2} x=\sec ^{2} x & \frac{\sin \theta}{\cos \theta}=\tan \theta & \frac{\cos \theta}{\sin \theta}=\cot \theta \\
1+\cot ^{2} x=\csc ^{2} x &
\end{array}
$$

Integration Properties

Area

$$
\int_{a}^{b}[f(x)-g(x)] d x \quad f(x) \text { is the equation on top }
$$

Volume

$f(x)$ always denotes the equation on top

About the x-axis:

$$
\begin{aligned}
& \pi \int_{a}^{b}[f(x)]^{2} d x \\
& \pi \int_{a}^{b}\left[(f(x))^{2}-(g(x))^{2}\right] d x
\end{aligned}
$$

about line $y=-1$
$\pi \int_{a}^{b}[f(x)+1]^{2} d x$
Examples:

About the y-axis:
$2 \pi \int_{a}^{b} x[f(x)] d x$
$2 \pi \int_{a}^{b} x[f(x)-g(x)] d x$
about the line $x=-1$
$2 \pi \int_{a}^{b}(x+1)[f(x)] d x$
$f(x)=x^{2}[0,2]$
x-axis:
$\pi \int_{0}^{2}\left(x^{2}\right)^{2} d x=\pi \int_{0}^{2} x^{4} d x$

y-axis:

$$
2 \pi \int_{0}^{2} x\left[x^{2}\right] d x=2 \pi \int_{0}^{2} x^{3} d x
$$

about $y=-1$
In this formula $f(x)$ or y is the radius of the shaded region. When we rotate about the line $\mathrm{y}=-1$, we have to increase the radius by 1 . That is why we add 1 to the radius

$$
\pi \int_{0}^{2}\left[x^{2}+1\right]^{2} d x=\pi \int_{0}^{2}\left(x^{4}+2 x^{2}+1\right) d x
$$

about $x=-1$
In this formula, \underline{x} is the radius of the shaded region. When we rotate about the line $x=-1$, we have the increased radius by 1 .

$$
2 \pi \int_{0}^{2}(x+1)\left[x^{2}\right] d x=2 \pi \int_{0}^{2}\left(x^{3}+x^{2}\right) d x
$$

Trapeziodal Rule

Used to approximate area under a curve using trapezoids.
Area $\approx \frac{b-a}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots .+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
where n is the number of subdivisions

Example:

$f(x)=x^{2}+1$. Approximate the area under the curve from $[0,2]$ using trapezoidal rule with 4 subdivisions

$$
\begin{aligned}
& a=0 \\
& b=2 \\
& n=4 \\
& A=\frac{2-0}{8}[f(0)+2 f(.5)+2 f(1)+2 f(1.5)+f(2)] \\
& =\frac{1}{4}[1+2(5 / 4)+2(2)+2(13 / 4)+5] \\
& =\frac{1}{4}[(76 / 4)]=\frac{76}{16}=4.750
\end{aligned}
$$

Riemann Sums

Used to approximate area under the curve using rectangles.
a) Inscribed rectangles: all of the rectangles are below the curve

Example: $f(x)=x^{2}+1$ from [0,2] using 4 subdivisions
(Find the area of each rectangle and add together)

$$
\begin{aligned}
& \mathrm{I}=.5(1) \quad \mathrm{II}=.5(5 / 4) \quad \mathrm{III}=.5(2) \quad \mathrm{IV}=.5(13 / 4) \\
& \text { Total Area }=3.750
\end{aligned}
$$

b) Circumscribed Rectangles: all rectangles reach above the curve

Example: $f(x)=x^{2}+1$ from [0,2] using 4 subdivisions

$$
\begin{aligned}
& \mathrm{I}=.5(5 / 4) \quad \mathrm{II}=.5(2) \quad \mathrm{III}=.5(13 / 4) \quad \mathrm{IV}=.5(5) \\
& \text { Total Area }=5.750
\end{aligned}
$$

Reading a Graph

When Given the Graph of f' (x)

Make a number line because you are more familiar with number line.

This is the graph of $f^{\prime}(x)$.
Make a number line.

- Where $f^{\prime}(x)=0$ (x-int) is where there are possible max and mins.
- Signs are based on if the graph is above or below the x -axis (determines increasing and decreasing)

$\underline{\mathrm{min}}$	$\underline{\max }$
$\frac{\mathrm{m}=-4,3}{\text { increasing }}$	$\frac{\text { decreasing }}{(-4,0)(3,6]}$

To read the $f^{\prime}(x)$ and figure out inflection points and concavity, you read $f^{\prime}(x)$ the same way you look at $f(x)$ (the original equation) to figure out max, min, increasing and decreasing.

For the graph on the previous page:

Signs are determined by if $f^{\prime}(x)$ is increasing (+) and decreasing
inflection pt (-)

$$
\begin{equation*}
x=-2,2,4,5 \tag{-}
\end{equation*}
$$

concave up concave down
$(-6,-2)(2,4)(5,6) \quad(-2,2)(4,5)$

Original Source:
http://www.geocities.com/Area51/Stargate/5847/index.html

