7.2 \& 7.3 Extra Practice

Let R be the region in the first quadrant bounded by the graph of $y=2 \sqrt{x}$, the horizontal line $y=6$, and the y-axis, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=7$.
(c) Region R is the base of a solid. For each y, where $0 \leq y \leq 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

In the figure above, R is the shaded region in the first quadrant bounded by the graph of $y=4 \ln (3-x)$, the horizontal line $y=6$, and the vertical line $x=2$.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is revolved about the horizontal line $y=8$.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square.

Find the volume of the solid.

Let R be the region in the first quadrant bounded by the graphs of $y=\sqrt{x}$ and $y=\frac{x}{3}$.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the vertical line $x=-1$.
(c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the y-axis are squares.

Find the volume of this solid.

1. Find the area of the region bounded by the graphs

$$
y=\sqrt{x}, y=-x, \text { and } x=4
$$

2. Find the area of the region bounded by the curves $x=y^{2}$ and $x=4$.
3. Find the area of the region bounded by the graphs of all four equations:
$f(x)=\sin \left(\frac{x}{2}\right) ; x$-axis; and the lines, $x=\frac{\pi}{2}$ and $x=\pi$.
4. Find the volume of the solid obtained by revolving about the x-axis, the region bounded by the graphs of $y=x^{2}+4$, the x-axis, the y-axis, and the lines $x=3$.
5. Find the volume of the solid obtained by revolving about the y-axis the region bounded by $x=y^{2}+1, x=0, y=-1$, and $y=1$.
6. Let R be the region enclosed by the graph $y=3 x$, the x-axis and the line $x=4$. The line $x=a$ divides region R into two regions such that when the regions are revolved about the x-axis, the resulting solids have equal volume. Find a.
7. Find the volume of the solid obtained by revolving about the x-axis the region bounded by the graphs of $f(x)=x^{3}$ and $g(x)=x^{2}$.
8. The base of a solid is a region bounded by the circle $x^{2}+y^{2}=4$. The cross of the solid sections are perpendicular to the x-axis and are equilateral triangles. Find the volume of the solid.
9. Find the volume of the solid obtained by revolving about the y-axis, the region bounded by the curves $x=y^{2}$ and $y=x-2$.
10.For Problems 16 through 19, find the volume of the solid obtained by revolving the region as described below. See Figure 12.7-2.

Figure 12.7-2
11. R_{1} about the x-axis.
12. R_{2} about the y-axis.
13. R_{1} about the line $\overleftrightarrow{B C}$.
14. R_{2} about the line $\overleftrightarrow{A B}$.

Let R be the shaded region bounded by the graphs of $y=\sqrt{x}$ and $y=e^{-3 x}$ and the vertical line $x=1$, as shown in the figure above.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is revolved about the horizontal line $y=1$.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a rectangle whose height is 5 times the length of its
 base in region R. Find the volume of this solid.

