Review 7.1 to 7.3

1. The function $v(t)=15 t^{4}-12 t^{2}$ is the velocity in $\mathrm{m} / \mathrm{sec}$ of a particle moving along the x -axis, where t is measured in seconds. Use analytic methods to find the particle's displacement for $0 \leq \mathrm{t} \leq 3$. (Round to the nearest 10 m).
2. The graph of the velocity of a particle moving on the x-axis is given (See graph). The particle starts at $x=2$ when $t=0$. Find the particle's position at the end of the trip $(t=5)$.

3. A certain spring obeys Hooke's Law and requires a force of 12 N to stretch it 5 cm beyond its natural length. How much work would be done in stretching the spring from its natural length to 8 cm beyond its natural length?
4. Find the area of the region bounded by $x=3 y^{2}-5 y$ and $x=-y^{3}$ for $0 \leq y \leq 1$. Sketch a graph of the region.
5. Find the area of the region enclosed by $y=2 \sin x$ and $y=2 \cos x$ for $\frac{\pi}{4} \leq x \leq \frac{5 \pi}{4}$.
6. The base of a solid is the region between the line $y=18$ and the parabola $y=2 x^{2}$. The cross sections perpendicular to the x -axis are semicircles. Find the volume of the solid.
7. A region is bounded by the lines $y=\sqrt{x}, y=x-4$ and $y=0$. Find the volume of the solid generated by rotating this region about the x -axis.
8. The region bounded by $x=\sqrt{y-3}$ and $y=12$ is rotated about the y-axis. Find the volume of the solid formed.

Review 7.1 to 7.3 Answers

1. 620 meters
2. 8
3. $76.8 \mathrm{~N} \cdot \mathrm{~cm}$
4. 1.25 cubic units
5. $4 \sqrt{2}$ square units
6. $\frac{648 \pi}{5}$ cubic units
7. 15.924π cubic units
8. $\frac{81 \pi}{2}$ cubic units
