1) How long would it tak your answer to the nea	xe \$8000 to grow to \$24,00	00 at 5% compounded co	ntinuously? Round	1)
A) 22.6 years	B) 22.0 years	C) 22.2 years	D) 31.2 years	
2) The decay equation for	r a radioactive substance	is known to be $y = y_0 e^{-0}$	0.062t, with t in days.	2)
• •	t take for the amount of s	• • •	•	
A) 16.0 days	B) 58.2 days	C) 16.2 days	D) 7.0 days	
3) An artifact is discovered	ed at a certain site. If it ha	s 62% of the carbon-14 i	t originally contained,	3)
	te age of the artifact, to th		0,	
A) 1661 years old		B) 3824 years old		
C) 3040 years old		D) 4960 years old		
4) The radioactive decay	of a substance can be mo	deled by the differential e	equation $\frac{dy}{dt} = -0.101y$,	4)
where t is measured in nearest hundredth yea	years. Find the half-life or.	of the substance. Round y	your answer to the	
A) 6.86 years	B) 9.33 years	C) 7.48 years	D) 61.53 years	
5) A certain population is	,	s rate so that the populati	,	5)
5) A certain population is	s growing at a continuous	s rate so that the populati	,	5)
 5) A certain population is years. How long does A) 18.4 years 6) A bacterial culture has 	s growing at a continuous it take for the population B) 17.4 years an initial population of 1 at the end of 6 hours? As	s rate so that the populati to triple? C) 17.9 years .0,000. If its population d	on doubles every 11 D) 16.5 years leclines to 5000 in 4	5)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the exponential function $y = y_0 e^{kt}$ whose graph passes through the two given points.

7) _____

8)

10)

Use Newton's Law of Cooling to solve the problem.

- 8) A dish of lasagna baked at 350°F is taken out of the oven into a kitchen that is 71°F. After 8 minutes, the temperature of the lasagna is 281.9°F. When will its temperature be 225°F? Round your answer to the nearest minute.
 - A) 12 minutes after it was taken out of the oven
 - B) 17 minutes after it was taken out of the oven
 - C) 24 minutes after it was taken out of the oven
 - D) 21 minutes after it was taken out of the oven

9) A cup of coffee with temperature 104° F is placed in a freezer with temperature 0° F. After 8			9)	
minutes, the temperature of the coffee is 53.1°F. What will its temperature be 11 minutes after it				
is placed in the freezer? Round your answer to the nearest degree.				
A) 41°F	B) 32°F	C) 35°F	D) 38°F	

Solve the problem.

10) In some chemical reactions, the rate at which the amount of a substance changes with time is proportional to the amount present. In a certain reaction, the change of the substance satisfies the differential equation

$$\frac{\mathrm{dy}}{\mathrm{dt}} = -0.58\mathrm{y}$$

where y is measured in grams and t is measured in hours. If there are 100 grams of the substance when t = 0, how many grams will be left after the first hour?

11) The resisting force on a moving object such as a car coasting to a stop is proportional to its velocity and is thus equal to -kv for some positive constant k. Using the law Force = Mass × Acceleration, the velocity of an object slowed by air resistance satisfies the		
differential equation m $\frac{dv}{dt}$ = -kv. Solving this eq	uation gives $v = v_0 e^{-(k/m)t}$, where v_0 is the	
velocity of the object at time $t = 0$.		
 A 72-kg cyclist on a 6-kg bicycle starts coasting c about 3.9 kg/sec. About how far will the cyclist c A) ≈ 780 meters B) ≈ 185 meters 	•	
 12) The resisting force on a moving object such as a carvelocity and is thus equal to -kv for some positiv Force = Mass × Acceleration, the velocity of an ob 	e constant k. Using the law ject slowed by air resistance satisfies the	12)
differential equation m $\frac{dv}{dt}$ = -kv. Solving this eq	uation gives $v = v_0 e^{-(k/m)t}$, where v_0 is the	
velocity of the object at time $t = 0$.		
A 58-kg cyclist on a 6-kg bicycle starts coasting c about 3.8 kg/sec. How long will it take the cyclist A) ≈ 80.2 seconds	•	
C \approx 21.1 seconds	D) \approx 72.7 seconds	
13) A population of rabbits is given by the formula		13)
$P(t) = \frac{800}{1 + e^{5.1} - 0.32t},$		
where t is the number of months after a few rabbi a logistic differential equation. Identify k and the		
A) carrying capacity = 800 , k = 0.0004	B) carrying capacity = $e^{5.1}$, k = 0.0004	
C) carrying capacity = 800 , k = 0.32	D) carrying capacity = $e^{5.1}$, k = 0.32	
14) The table shows the population of a certain city fo Years after 1950 Population	or selected years between 1950 and 2003.	14)
0 7891		
20 103,087 30 191,064		
40 241,552		
50 265, 058		
55 269,116		

By finding a logistic regression equation to model the data, determine what the population of the city will approach in the long run.

A) 278, 715	B) 266,078	C) 254,180	D) 271,976

15) The table shows the popu	llation of a certain city fo	or selected years between	1950 and 2003.	15)
Years after 1950		5		·
0	7891			
20	103,087			
30	191,064			
40	241,552			
50	265, 058			
55	269,116			
By finding a logistic regr	ession equation to mode	l the data. determine whe	en the population of	
the city will first exceed 2	1			
A) In 2010	B) In 2012	C) In 2015	D) In 2018	
Use Euler's method to solve the ini	tial value problem			
_	-			
16) $\frac{dy}{dx} = x - 3$ and $y = 4$ wh	$\operatorname{en} x = 1$			16)
Use Euler's method with	increments of $\Delta x = 0.1$ to	o approximate the value of	of v when $x = 1.3$.	
A) 3.43	B) 3.68	C) 3.5	D) 3.48	
Solve the problem.				
17) Suppose that electricity is	draining from a capacit	or at a rate proportional t	to the voltage V across	17)
its terminals and that, if t	ê î	1 1	0	,
	,			
$\frac{\mathrm{dV}}{\mathrm{dt}} = -\frac{1}{40}\mathrm{V}$				
How long will it take the	valtage to drep to 2007	of its original value?		
How long will it take the A) 81.1 seconds	B) 64.4 seconds	C) 70.2 seconds	D) 74.0 seconds	
A) 81.1 seconds	D) 04.4 seconds	C) 70.2 seconds	D) 74.0 seconds	
Use Euler's method to solve the ini	tial value problem.			
18) $\frac{dy}{dx} = x - 4y$ and $y = 4$ where $\frac{dy}{dx} = \frac{1}{2} \frac{dy}{dx} = \frac{1}{2} \frac{dy}{dx}$	hen $x = 2$			18)
Use Euler's method with	increments of $\Delta x = -0.1$	to approximate the value	of y when $x = 1.7$.	
A) 10.218	B) 10.138	C) 10.308	D) 10.348	
<i>,</i>	,	,	,	

Answer Key Testname: APPLICATIONOFDIFFEQUATIONS

1) B 2) A 3) B 4) A 5) B 6) A 7) B 8) B 9) A 10) C 11) D 12) C 13) A 14) D 15) C 16) A

17) B 18) B

5