1. The table shows the velocity of a bicyclist riding for 60 seconds. Use right endpoint values (RRAM) to estimate the distance using 6 intervals of length 10. (By hand, not using your program)

Time (sec)	0	10	20	30	40	50	60
Velocity (ft/sec)	0	15	20	22	24	28	22

2. Sketch the region \mathbf{R} enclosed between the graph of $\mathrm{y}=-\frac{1}{4} x^{2}+x+1$ and the x -axis for $0 \leq \mathrm{x} \leq 4$. Partition $[0,4]$ into 4 subintervals and show the four rectangles that MRAM uses to approximate the area of R.

3. Find MRAM for the region described in question 2. (By hand, not using your program)
4. Write the definite integral for $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(c_{k}^{2}+8 c_{k}\right) \Delta x$, where P is any partition of $[1,5]$?
5. Use the graph of the integrand and areas to evaluate $\int_{0}^{8} \sqrt{64-x^{2}} d x$
6. Review Lesson 5.3 \#1-6. Make sure you know the Rules for definite integrals (p.269).
7. Find the average value of the function $y=-3 x^{2}-1$ on the interval $[2,4]$.
8. Use the graph of the integrand and areas to evaluate $\int_{2 b}^{5 b} x d x$
9. Evaluate $\int_{0}^{\frac{3 \pi}{2}} 2 \cos x d x$ by finding the antiderivative.
