1. The table shows the velocity of a bicyclist riding for 60 seconds. Use right endpoint values (RRAM) to estimate the distance using 6 intervals of length 10. (By hand, not using your program)

Time (sec)	0	10	20	30	40	50	60
Velocity (ft/sec)	0	15	20	22	24	28	22

2. Sketch the region R enclosed between the graph of $y = -\frac{1}{4}x^2 + x + 1$ and the x-axis for $0 \le x \le 4$. Partition

[0, 4] into 4 subintervals and show the four rectangles that MRAM uses to approximate the area of R.

- 3. Find MRAM for the region described in question 2. (By hand, not using your program)
- 4. Write the definite integral for $\lim_{\|P\|\to 0} \sum_{k=1}^{n} (c_k^2 + 8c_k) \Delta x$, where P is any partition of [1, 5]?

5. Use the graph of the integrand and areas to evaluate $\int_{0}^{8} \sqrt{64 - x^{2}} dx$

- 6. Review Lesson 5.3 #1-6. Make sure you know the Rules for definite integrals (p.269).
- 7. Find the average value of the function $y = -3x^2 1$ on the interval [2, 4].
- 8. Use the graph of the integrand and areas to evaluate $\int_{2k}^{3v} x dx$
- 9. Evaluate $\int_{0}^{\frac{3\pi}{2}} 2\cos x dx$ by finding the antiderivative.